Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Infect Dis ; 227(11): 1255-1265, 2023 05 29.
Article in English | MEDLINE | ID: covidwho-2307247

ABSTRACT

BACKGROUND: Neutralising antibodies (nAbs) play a critical role in the protection against severe COVID-19. In the era of vaccine boosters and repeated SARS-CoV-2 outbreaks, identifying individuals at risk represents a public health priority. METHODS: Relying on the Monaco COVID Public Health Programme, we evaluated nAbs from July 2021-June 2022 in 8,080 SARS-CoV-2 vaccinated and/or infected children and adults, at their inclusion visit. We stratified by infection status and investigated variables associated with nAbs using a generalised additive model. RESULTS: Infected and vaccinated participants had high and consistent nAbs (>800 IU/mL), which remained stable over time since injection, regardless of the number of vaccine doses, body mass index, sex, or age. By contrast, uninfected participants showed larger variability (two doses [V2] median 157.6; interquartile range [IQR] 43.3-439.1 IU/mL) versus three doses [V3] median 882.5; [829.5-914.8] IU/mL). NAbs decreased by 20% per month after V2 (adjusted ratio 0.80; 95%CI [0.79-0.82]), but remained stable after V3 (adjusted ratio 0.98; 95%CI [0.92-1.05]). CONCLUSIONS: Hybrid immunity provided stable, high and consistent nAbs over time. The benefit of boosters was marked to restore decaying nAbs in uninfected participants. NAbs could identify individuals at risk of severe COVID-19 and provide more targeted vaccine boosters' campaigns.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Humans , Antibodies, Neutralizing , Cross-Sectional Studies , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination
4.
Bio Protoc ; 11(21): e4236, 2021 Nov 05.
Article in English | MEDLINE | ID: covidwho-1527087

ABSTRACT

This protocol details a rapid and reliable method for the production and titration of high-titre viral pseudotype particles with the SARS-CoV-2 spike protein (and D614G or other variants of concern, VOC) on a lentiviral vector core, and use for neutralisation assays in target cells expressing angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). It additionally provides detailed instructions on substituting in new spike variants via gene cloning, lyophilisation and storage/shipping considerations for wide deployment potential. Results obtained with this protocol show that SARS-CoV-2 pseudotypes can be produced at equivalent titres to SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) pseudotypes, neutralised by human convalescent plasma and monoclonal antibodies, and stored at a range of laboratory temperatures and lyophilised for distribution and subsequent application.

6.
J Virol ; 95(19): e0068521, 2021 09 09.
Article in English | MEDLINE | ID: covidwho-1486511

ABSTRACT

The human angiotensin-converting enzyme 2 acts as the host cell receptor for SARS-CoV-2 and the other members of the Coronaviridae family SARS-CoV-1 and HCoV-NL63. Here, we report the biophysical properties of the SARS-CoV-2 spike variants D614G, B.1.1.7, B.1.351, and P.1 with affinities to the ACE2 receptor and infectivity capacity, revealing weaknesses in the developed neutralizing antibody approaches. Furthermore, we report a preclinical characterization package for a soluble receptor decoy engineered to be catalytically inactive and immunologically inert, with broad neutralization capacity, that represents an attractive therapeutic alternative in light of the mutational landscape of COVID-19. This construct efficiently neutralized four SARS-CoV-2 variants of concern. The decoy also displays antibody-like biophysical properties and manufacturability, strengthening its suitability as a first-line treatment option in prophylaxis or therapeutic regimens for COVID-19 and related viral infections. IMPORTANCE Mutational drift of SARS-CoV-2 risks rendering both therapeutics and vaccines less effective. Receptor decoy strategies utilizing soluble human ACE2 may overcome the risk of viral mutational escape since mutations disrupting viral interaction with the ACE2 decoy will by necessity decrease virulence, thereby preventing meaningful escape. The solution described here of a soluble ACE2 receptor decoy is significant for the following reasons: while previous ACE2-based therapeutics have been described, ours has novel features, including (i) mutations within ACE2 to remove catalytical activity and systemic interference with the renin/angiotensin system, (ii) abrogated FcγR engagement, reduced risk of antibody-dependent enhancement of infection, and reduced risk of hyperinflammation, and (iii) streamlined antibody-like purification process and scale-up manufacturability indicating that this receptor decoy could be produced quickly and easily at scale. Finally, we demonstrate that ACE2-based therapeutics confer a broad-spectrum neutralization potency for ACE2-tropic viruses, including SARS-CoV-2 variants of concern in contrast to therapeutic MAb.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Antibodies, Neutralizing/immunology , Antibody-Dependent Enhancement , COVID-19/immunology , HEK293 Cells , Humans , Kinetics , Mutation , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism
7.
Lancet Microbe ; 3(3): e235-e240, 2022 03.
Article in English | MEDLINE | ID: covidwho-1483037

ABSTRACT

The first WHO International Standard and International Reference Panel for anti-SARS-CoV-2 immunoglobulin were established by the WHO Expert Committee on Biological Standardization in December, 2020. The WHO International Antibody Standards are intended to serve as global reference reagents, against which national reference preparations or secondary standards can be calibrated. Calibration will facilitate comparison of results of assays (eg, of the neutralising antibody response to candidate COVID-19 vaccines) conducted in different countries. Use of these standards is expected to contribute to better understanding of the immune response, and particularly of the correlates of protection. This Personal View provides some technical details of the WHO Antibody Standards for SARS-CoV-2, focusing specifically on the use of these standards for the evaluation of the immune response to COVID-19 vaccines, rather than other applications (eg, diagnostic or therapeutic). The explanation with regard to why rapid adoption of the standards is crucial is also included, as well as how funders, journals, regulators, and ethics committees could drive adoption in the interest of public health.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibody Formation , COVID-19/prevention & control , Humans , SARS-CoV-2 , World Health Organization
8.
Antiviral Res ; 194: 105147, 2021 10.
Article in English | MEDLINE | ID: covidwho-1347484

ABSTRACT

The SARS-CoV-2 receptor angiotensin converting enzyme 2 (ACE2) was previously engineered into a high affinity tetravalent format (ACE2-Fc-TD) that is a potential decoy protein in SARS-CoV-2 infection.We report that this protein shows greatly enhanced binding to SARS-CoV-2 spike proteins of the SARS-CoV-2 variants of concern B.1.1.7 (alpha variant, originally isolated in the United Kingdom) and B.1.351 (beta variant, originally isolated in South Africa) with picomolar compared with nanomolar Kd values. In addition, ACE2-Fc-TD displays greater neutralization of SARS-CoV-2 pseudotype viruses compared to a dimeric ACE2-Fc, with enhanced activity on variant B.1.351. This tetrameric decoy protein would be a valuable addition to SARS-CoV-2 therapeutic approaches, especially where vaccination cannot be used but also should there be any future coronavirus pandemics.


Subject(s)
Angiotensin-Converting Enzyme 2/pharmacology , Antiviral Agents/metabolism , COVID-19/prevention & control , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , COVID-19/enzymology , COVID-19/virology , Cell Line , Humans , Kinetics , Mutation , Protein Binding , Protein Domains , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Drug Treatment
9.
Front Immunol ; 12: 678570, 2021.
Article in English | MEDLINE | ID: covidwho-1295637

ABSTRACT

Passive immunization using monoclonal antibodies will play a vital role in the fight against COVID-19. The recent emergence of viral variants with reduced sensitivity to some current antibodies and vaccines highlights the importance of broad cross-reactivity. This study describes deep-mining of the antibody repertoires of hospitalized COVID-19 patients using phage display technology and B cell receptor (BCR) repertoire sequencing to isolate neutralizing antibodies and gain insights into the early antibody response. This comprehensive discovery approach has yielded a panel of potent neutralizing antibodies which bind distinct viral epitopes including epitopes conserved in SARS-CoV-1. Structural determination of a non-ACE2 receptor blocking antibody reveals a previously undescribed binding epitope, which is unlikely to be affected by the mutations in any of the recently reported major viral variants including B.1.1.7 (from the UK), B.1.351 (from South Africa) and B.1.1.28 (from Brazil). Finally, by combining sequences of the RBD binding and neutralizing antibodies with the B cell receptor repertoire sequencing, we also describe a highly convergent early antibody response. Similar IgM-derived sequences occur within this study group and also within patient responses described by multiple independent studies published previously.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , COVID-19/prevention & control , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Cell Surface Display Techniques/methods , Data Mining/methods , Epitopes/immunology , Humans , Immunization, Passive/methods , COVID-19 Serotherapy
10.
Sci Rep ; 11(1): 10617, 2021 05 19.
Article in English | MEDLINE | ID: covidwho-1236094

ABSTRACT

Approaches are needed for therapy of the severe acute respiratory syndrome from SARS-CoV-2 coronavirus (COVID-19). Interfering with the interaction of viral antigens with the angiotensin converting enzyme 2 (ACE-2) receptor is a promising strategy by blocking the infection of the coronaviruses into human cells. We have implemented a novel protein engineering technology to produce a super-potent tetravalent form of ACE2, coupled to the human immunoglobulin γ1 Fc region, using a self-assembling, tetramerization domain from p53 protein. This high molecular weight Quad protein (ACE2-Fc-TD) retains binding to the SARS-CoV-2 receptor binding spike protein and can form a complex with the spike protein plus anti-viral antibodies. The ACE2-Fc-TD acts as a powerful decoy protein that out-performs soluble monomeric and dimeric ACE2 proteins and blocks both SARS-CoV-2 pseudovirus and SARS-CoV-2 virus infection with greatly enhanced efficacy. The ACE2 tetrameric protein complex promise to be important for development as decoy therapeutic proteins against COVID-19. In contrast to monoclonal antibodies, ACE2 decoy is unlikely to be affected by mutations in SARS-CoV-2 that are beginning to appear in variant forms. In addition, ACE2 multimeric proteins will be available as therapeutic proteins should new coronaviruses appear in the future because these are likely to interact with ACE2 receptor.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/pharmacology , Antiviral Agents/metabolism , COVID-19/prevention & control , Protein Engineering/methods , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/chemistry , COVID-19/enzymology , COVID-19/virology , Cell Line , Drug Design , Haplorhini , Humans , Protein Binding , Protein Structural Elements , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Drug Treatment
11.
Sci Rep ; 11(1): 10475, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1233721

ABSTRACT

Infection by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes COVID-19 disease. Therapeutic antibodies are being developed that interact with the viral spike proteins to limit viral infection of epithelium. We have applied a method to dramatically improve the performance of anti-SARS-CoV-2 antibodies by enhancing avidity through multimerization using simple engineering to yield tetrameric antibodies. We have re-engineered six anti-SARS-CoV-2 antibodies using the human p53 tetramerization domain, including three clinical trials antibodies casirivimab, imdevimab and etesevimab. The method yields tetrameric antibodies, termed quads, that retain efficient binding to the SARS-CoV-2 spike protein, show up to two orders of magnitude enhancement in neutralization of pseudovirus infection and retain potent interaction with virus variant of concern spike proteins. The tetramerization method is simple, general and its application is a powerful methodological development for SARS-CoV-2 antibodies that are currently in pre-clinical and clinical investigation.


Subject(s)
SARS-CoV-2/metabolism , Single-Chain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antigen-Antibody Reactions , COVID-19/virology , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans , Neutralization Tests , Protein Domains , Protein Multimerization , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/therapeutic use , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics , Single-Chain Antibodies/therapeutic use , Surface Plasmon Resonance , Tumor Suppressor Protein p53/chemistry , COVID-19 Drug Treatment
12.
Viruses ; 13(2)2021 01 31.
Article in English | MEDLINE | ID: covidwho-1069882

ABSTRACT

Serological assays detecting neutralising antibodies are important for determining the immune responses following infection or vaccination and are also often considered a correlate of protection. The target of neutralising antibodies is usually located in the Envelope protein on the viral surface, which mediates cell entry. As such, presentation of the Envelope protein on a lentiviral particle represents a convenient alternative to handling of a potentially high containment virus or for those viruses with no established cell culture system. The flexibility, relative safety and, in most cases, ease of production of lentiviral pseudotypes, have led to their use in serological assays for many applications such as the evaluation of candidate vaccines, screening and characterization of anti-viral therapeutics, and sero-surveillance. Above all, the speed of production of the lentiviral pseudotypes, once the envelope sequence is published, makes them important tools in the response to viral outbreaks, as shown during the COVID-19 pandemic in 2020. In this review, we provide an overview of the landscape of the serological applications of pseudotyped lentiviral vectors, with a brief discussion on their production and batch quality analysis. Finally, we evaluate their role as surrogates for the real virus and possible alternatives.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , COVID-19/therapy , Genetic Therapy/methods , Genetic Vectors/genetics , Animals , Antiviral Agents , COVID-19/blood , COVID-19 Vaccines/administration & dosage , Humans , Lentivirus/genetics , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL